∵各项均为正,∴ \({a_3} = \sqrt {{a_2} \cdot {a_4}} = 4\) ,
∴ \({S_2} = {a_1} + {a_2} = {a_1} + {a_1} \cdot q = 3\) , \({S_3} = {a_1} + {a_2} + {a_3} = {a_1} + {a_1} \cdot q + {a_1} \cdot {q^2} = 7\)
作比并化简得 \(3{q^2} - 4q - 4 = 0\) ,解得 \(q = - \frac{2}{3}\) (舍)或 \(q = 2\) ,
\({a_4} = {a_3} \cdot q = 8\) , \({S_4} = {S_3} + {a_4} = 15\)