等比数列中 \(q = \frac{1}{2}\) ,设首项是 \({a_1}\) ,
根据通项公式和前 \(n\) 项和公式得 \({S_4} = \frac{{{a_1}\left[ {1 - {{\left( {\frac{1}{2}} \right)}^4}} \right]}}{{1 - \frac{1}{2}}} = \frac{{15}}{8}{a_1}\) ,
\({a_4} = {a_1}{\left( {\frac{1}{2}} \right)^3} = \frac{1}{8}{a_1}\) ,
\(\therefore \frac{{{S_4}}}{{{a_4}}} = \frac{{\frac{{15{a_1}}}{8}}}{{\frac{{{a_1}}}{8}}} = 15\)