“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


在数列 \( \left\{{a}_{n}\right\}\) 中, \( {a}_{1}=1\) \( {a}_{n+1}=2{a}_{n}+3\) \( n\in {\mathit{N}}^{*}\)

 \( {b}_{n}={\mathrm{log}}_{2}\left({a}_{n}+3\right)\) ,求数列 \( \left\{\frac{1}{{b}_{n}{b}_{n+1}}\right\}\) 的前 \( n\) 项和 \( {T}_{n}\) 



知识点:第四章 数列


参考答案:由(1)得: \({a_n} + 3 = 4 \cdot {2^{n - 1}} = {2^{n + 1}}\) ,
\( \therefore {a}_{n}={2}^{n+1}-3\) ,
\( \therefore {b}_{n}={\mathrm{log}}_{2}\left({a}_{n}+3\right)={\mathrm{log}}_{2}{2}^{\left(n+1\right)}=n+1\) ,
\( \therefore \frac{1}{{b}_{n}{b}_{n+1}}=\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{1}{n+1}-\frac{1}{n+2}\) ,
\( \therefore {T}_{n}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\cdot \cdot \cdot +\frac{1}{n}-\frac{1}{n+1}+\frac{1}{n+1}-\frac{1}{n+2}=\frac{1}{2}-\frac{1}{n+2}=\frac{n}{2n+4}\)

进入考试题库