“微信扫一扫”进入题库练习及模拟考试
在数列
若
参考答案:由(1)得: \({a_n} + 3 = 4 \cdot {2^{n - 1}} = {2^{n + 1}}\) ,
\( \therefore {a}_{n}={2}^{n+1}-3\) ,
\( \therefore {b}_{n}={\mathrm{log}}_{2}\left({a}_{n}+3\right)={\mathrm{log}}_{2}{2}^{\left(n+1\right)}=n+1\) ,
\( \therefore \frac{1}{{b}_{n}{b}_{n+1}}=\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{1}{n+1}-\frac{1}{n+2}\) ,
\( \therefore {T}_{n}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\cdot \cdot \cdot +\frac{1}{n}-\frac{1}{n+1}+\frac{1}{n+1}-\frac{1}{n+2}=\frac{1}{2}-\frac{1}{n+2}=\frac{n}{2n+4}\)