“微信扫一扫”进入题库练习及模拟考试

高中数学选择性必修 第二册(381题)


正项递增等比数列 \( \left\{{a}_{n}\right\}\) ,若 \( {a}_{2}+{a}_{4}=30\) \( {a}_{1}{a}_{5}=81\) ,则 \( \frac{{a}_{2}}{{a}_{4}}=\) ___.



知识点:第四章 数列


参考答案:\( \frac{1}{9}\)


解析:

\( \left\{\begin{array}{c}{a}_{2}{a}_{4}=81\\\ {a}_{2}+{a}_{4}=30\end{array}\right.\) ,解得 \( \left\{\begin{array}{c}{a}_{2}=3\\\ {a}_{4}=27\end{array}\right.\) ,或 \( \left\{\begin{array}{c}{a}_{4}=3\\\ {a}_{2}=27\end{array}\right.\) 

因为 \( \left\{{a}_{n}\right\}\) 是正项递增的等比数列,所以 \( \left\{\begin{array}{c}{a}_{2}=3\\\ {a}_{4}=27\end{array}\right.\) ,即 \( \frac{{a}_{2}}{{a}_{4}}=\frac{1}{9}\) .

进入考试题库