已知椭圆\(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\)的左、右焦点分别为\({F_1}\left( { - c,0} \right)\),\({F_2}\left( {c,0} \right)\),若椭圆上存在点\(P\)使\(\frac{a}{{\sin \angle P{F_1}{F_2}}} = \frac{c}{{\sin \angle P{F_2}{F_1}}}\)成立,则该椭圆的离心率的取值范围为___.
参考答案:\(\left( {\sqrt 2 - 1,1} \right)\)