“微信扫一扫”进入题库练习及模拟考试
已知O为坐标原点,过点\(M(1,0)\)的直线\(l\)与抛物线\(C:{y}^{2}=2px(p>0)\))交于\(A,B\)两点,且\(\overrightarrow{OA}\cdot \overrightarrow{OB}=-3\).
过点\(M\)作直线\(l'\bot l\)交抛物线\(C\)于\(P,Q\)两点,记\(\triangle OAB,\triangle OPQ\)的面积分别为\({S}_{1},{S}_{2}\),证明:\(\frac {1} {{S}^{2}_{1}}+\frac {1} {{S}^{2}_{2}}\)为定值.
参考答案:\(\frac {1} {4}\)
进入考试题库