“微信扫一扫”进入题库练习及模拟考试
设双曲线\(C:\frac {{x}^{2}} {{a}^{2}}-\frac {{y}^{2}} {{b}^{2}}=1(a>0,b>0)\)的左、右焦点分别为\({F}_{1}\),\({F}_{2}\),离心率为\(\sqrt {3}\),\(P\)是双曲线\(C\)上一点,且\(\angle {F}_{1}P{F}_{2}=60°\). 若\(\triangle {F}_{1}P{F}_{2}\)的面积为\(4\sqrt {3}\),求\(a\)的值.
参考答案:\(a=\sqrt {2}\)
进入考试题库