“微信扫一扫”进入题库练习及模拟考试
在梯形
参考答案:证明:
因为在梯形\(ABCD\)中,
\(AB\)||\(CD\),
\(E,F\)分别为\(BC,AD\)的中点,
所以\(EF\)||\(AB\),
且\(EF=\frac {1} {2}(AB+CD)\),
又,\({C}_{1}{D}_{1}\)||\(EF\),
\(EF\)||\(AB\),所以\({C}_{1}{D}_{1}\)||\(AB\),
因为\(G,H\)分别为\(A{D}_{1},B{C}_{1}\)的中点,
所以\(GH\)||\(AB\),\(GH\)||\(EF\),
且\(GH=\frac {1} {2}(AB+{C}_{1}{D}_{1})=\frac {1} {2}(AB+CD)\),
所以\(GH\)平行且等于\(EF\),
所以四边形\(EFGH\)为平行四边。