下面有三个命题:
①若\(\overrightarrow {OA} = \left( {3{\rm{ }}\,,{\rm{ }}\, - 4} \right)\),\(\overrightarrow {OB} = \left( {6{\rm{ }}\,,{\rm{ }}\, - 3} \right)\),\(\overrightarrow {OC} = \left( {5 - m{\rm{ }}\,,{\rm{ }}\,3 - m} \right)\),\(\angle ABC\)为锐角,则实数\(m\)的取值范围是\(m > \frac{3}{4}\);
②点\(O\)在\(\vartriangle ABC\)所在的平面内,若\(\overrightarrow {OA} {\rm{ }}\bullet {\rm{ }}\overrightarrow {OB} = \overrightarrow {OB} {\rm{ }}\bullet {\rm{ }}\overrightarrow {OC} = \overrightarrow {OA} {\rm{ }}\bullet {\rm{ }}\overrightarrow {OC} \),则点\(O\)为\(\vartriangle ABC\)的垂心;
③已知O为△\(ABC\)内部一点,且\(\overrightarrow {OA} + \overrightarrow {OB} + \sqrt 2 \overrightarrow {OC} = {\rm{0}}\),\(\left| {\overrightarrow {OA} } \right| = \left| {\overrightarrow {OB} } \right| = \left| {\overrightarrow {OC} } \right| = 1\),则\(\vartriangle ABC\)的面积为\(\frac{{\sqrt 2 + 1}}{2}\).
其中真命题的序号是___.