“微信扫一扫”进入题库练习及模拟考试

初中数学八年级下册(648题)


如图,已知正方形\(ABCD\)中,点\(E\)\(F\)分别在边\(AB\)\(BC\)边上,且\(\angle EDF = 45^\circ \),连接\(EF\)



求证:\(EF = AE + CF\);



知识点:第十八章 平行四边形


参考答案:


延长\(BC\)至点\(G\),使\(CG=AE\)



    



∵正方形\(ABCD\)\(∴AD=AB=BC=CD,\)
\(∠A=∠B=∠BCD=∠ADC=90°\)



\(∴∠A=∠DCG=90°\)



\(△DAE\)\(△DCG\)



\(\begin{cases} DA = DC \\ \angle A = \angle DCG \\ AE = CG \\ \end{cases}\)



\(∴△DAE≌△DCG\left ( {\text{SAS}} \right )\)



\(∴∠1=∠2,DE=DG\)



\(∵∠EDF=45°,∠ADC=90°\)



\(∴∠1+∠3=45°\)



\(∴∠2+∠3=45°=∠GDF\)



\(∴∠EDF=∠GDF\)



\(△EDF\)\(△GDF\)



\(\begin{cases} DE = DG \\ \angle EDF = \angle GDF \\ DF = DF \\ \end{cases}\)



\(∴△EDF≌△GDF\left ( {\text{SAS}} \right )\)



\(∴EF=FG=AE+CF\)


进入考试题库