延长\(BC\)至点\(G\),使\(CG=AE\),
∵正方形\(ABCD\),\(∴AD=AB=BC=CD,\)
\(∠A=∠B=∠BCD=∠ADC=90°\)
\(∴∠A=∠DCG=90°\)
∵在\(△DAE\)和\(△DCG\)中
\(\begin{cases} DA = DC \\ \angle A = \angle DCG \\ AE = CG \\ \end{cases}\)
\(∴△DAE≌△DCG\left ( {\text{SAS}} \right )\)
\(∴∠1=∠2,DE=DG\)
\(∵∠EDF=45°,∠ADC=90°\)
\(∴∠1+∠3=45°\)
\(∴∠2+∠3=45°=∠GDF\)
\(∴∠EDF=∠GDF\)
∵在\(△EDF\)和\(△GDF\)中
\(\begin{cases} DE = DG \\ \angle EDF = \angle GDF \\ DF = DF \\ \end{cases}\)
\(∴△EDF≌△GDF\left ( {\text{SAS}} \right )\)
\(∴EF=FG=AE+CF\)