在正方形\(ABCD\)中,\(P\)为对角线\(BD\)上一点,\(PE \bot BC\),垂足为\(E\),\(PF \bot CD\),垂足为\(F\),求证:\(EF = AP\)。
证明:连接\(PC\),

\(\because \)四边形\(ABCD\)是正方形,
\(\therefore \angle BCD = 90^\circ \),\(\angle ABD = \angle CBD = 45^\circ \),\(BA = BC\),
\(\because PE \bot BC\),\(PF \bot CD\),\(\angle BCD = 90^\circ \),
\(\therefore \)四边形\(PECF\)是矩形,
\(\therefore PC = EF\),
在\(\Delta ABP\)和\(\Delta CBP\)中,
\(\left\{ {\begin{array}{*{20}{l}}
{AB = CB} \\
{\angle ABP = \angle CBP} \\
{BP = BP}
\end{array}} \right.\),
\(\therefore \Delta ABP \cong \Delta CBP\),
\(\therefore PA = PC\),
\(\therefore AP = EF\)。