“微信扫一扫”进入题库练习及模拟考试

初中数学八年级下册(648题)


在正方形\(ABCD\)中,\(P\)为对角线\(BD\)上一点,\(PE \bot BC\),垂足为\(E\),\(PF \bot CD\),垂足为\(F\),求证:\(EF = AP\)。


图片 13



知识点:第十八章 平行四边形


参考答案:

证明:连接\(PC\)

图片 14

\(\because \)四边形\(ABCD\)是正方形,

\(\therefore \angle BCD = 90^\circ \)\(\angle ABD = \angle CBD = 45^\circ \)\(BA = BC\)

\(\because PE \bot BC\)\(PF \bot CD\)\(\angle BCD = 90^\circ \)

\(\therefore \)四边形\(PECF\)是矩形,

\(\therefore PC = EF\)

\(\Delta ABP\)\(\Delta CBP\)中,

\(\left\{ {\begin{array}{*{20}{l}}
{AB = CB} \\
{\angle ABP = \angle CBP} \\
{BP = BP}
\end{array}} \right.\)

\(\therefore \Delta ABP \cong \Delta CBP\)

\(\therefore PA = PC\)

\(\therefore AP = EF\)

进入考试题库