如图,正方形\(ABCD\)中,\(EF⊥GH\)于点\(O\),点\(E、F\)分别在边\(AD、BC\)上,点\(G、H\)分别在边\(AB、CD\)上,求证:\(EF=GH\)。
证明:过点\(A\)作\(AM//EF\)交\(BC\)于点\(M\),过点\(B\)作\(BN//GH\)交\(CD\)于点\(N\),

∵ 正方形\(ABCD\),
\(∴AD//BC,AB//CD,\)
\(AB=BC,∠ABC=∠C=90°\)
\(∵AM//EF,BN//GH\),
\(∴AM=EF,BN=GH\)
\(∵EF⊥GH\)于点\(O\),\(AM//EF,BN//GH\),
\(∴∠4=∠EOG=90°\)
\(∴∠1+∠3=90°\)
\(∵∠2+∠3=∠ABC=90°\)
\(∴∠1=∠2\)
∵在\(△ABM\)和\(△BCN\)中
\(\begin{cases} \angle 1 = \angle 2 \\ AB = BC \\ \angle ABM = \angle C \\ \end{cases}\)
\(∴△ABM≌△BCN\left ( {\text{ASA}} \right )\),
\(∴AM=BN\)
\(∴EF=GH\)