“微信扫一扫”进入题库练习及模拟考试

初中数学八年级下册(648题)


如图,在平行四边形\(ABCD\)中,\(∠BAC=90°\),\(E\)、\(F\)分别为\(AD\)、\(BC\)的中点,点\(M\)、\(N\)在对角线\(AC\)上,且\(AM = CN\),求证:四边形\(EMFN\)是菱形。




知识点:第十八章 平行四边形


参考答案:


证明:连接\(EF\)\(AC\)于点\(O\)



\(\because \)四边形\(ABCD\)是平行四边形,


\(\therefore AD//BC\)\(AD = BC\)


\(\therefore \angle EAM = \angle FCN\)


\(\because E\)\(F\)分别为\(AD\)\(BC\)的中点,


\(\therefore AE = \frac{1}{2}AD,{\rm{ }}CF = BF = \frac{1}{2}BC\)


\(\therefore AE=CF,AE=BF\)  


\(\because \)\(\Delta AEM\)\(\Delta CFN\)中,


\(\left\{ {\begin{array}{*{20}{l}} {AE = CF} \\ {\angle EAM = \angle FCN} \\ {AM = CN} \end{array}} \right.\)


\(\therefore \Delta AEM \cong \Delta CFN(SAS)\)


\(\therefore EM = FN\)\(∠1=∠2\)


\(\therefore ∠3=∠4\)


\(\therefore EM//FN\)


\(\therefore \)四边形\(EMFN\)是平行四边形;


\(\because \)\(AE//BF\)\(AE = BF\)


\(\therefore \)四边形\(AEFB\)是平行四边形,


\(\therefore AB//EF\)


\(\because ∠BAC=90°\)


\(\therefore \angle COF = \angle BAC = 90^\circ \)


\(\therefore EF \bot MN\)


\(\therefore \)平行四边形\(EMFN\)是菱形


进入考试题库