如图,在平行四边形\(ABCD\)中,\(∠BAC=90°\),\(E\)、\(F\)分别为\(AD\)、\(BC\)的中点,点\(M\)、\(N\)在对角线\(AC\)上,且\(AM = CN\),求证:四边形\(EMFN\)是菱形。
证明:连接\(EF\)交\(AC\)于点\(O\),

\(\because \)四边形\(ABCD\)是平行四边形,
\(\therefore AD//BC\),\(AD = BC\),
\(\therefore \angle EAM = \angle FCN\),
\(\because E\)、\(F\)分别为\(AD\)、\(BC\)的中点,
\(\therefore AE = \frac{1}{2}AD,{\rm{ }}CF = BF = \frac{1}{2}BC\),
\(\therefore AE=CF,AE=BF\)
\(\because \)在\(\Delta AEM\)和\(\Delta CFN\)中,
\(\left\{ {\begin{array}{*{20}{l}} {AE = CF} \\ {\angle EAM = \angle FCN} \\ {AM = CN} \end{array}} \right.\),
\(\therefore \Delta AEM \cong \Delta CFN(SAS)\),
\(\therefore EM = FN\),\(∠1=∠2\),
\(\therefore ∠3=∠4\),
\(\therefore EM//FN\),
\(\therefore \)四边形\(EMFN\)是平行四边形;
\(\because \)\(AE//BF\),\(AE = BF\),
\(\therefore \)四边形\(AEFB\)是平行四边形,
\(\therefore AB//EF\),
\(\because ∠BAC=90°\),
\(\therefore \angle COF = \angle BAC = 90^\circ \),
\(\therefore EF \bot MN\),
\(\therefore \)平行四边形\(EMFN\)是菱形。