“微信扫一扫”进入题库练习及模拟考试
如图,在平行四边形\(ABCD\)中,点\(O\)是对角线\(BD\)的中点,过点\(O\)作\(EF \bot BD\),垂足为点\(O\),且分别交边\(AD\),\(BC\)于点\(E\),\(F\).连接\(BE,DF\)。求证:四边形\(BEDF\)是菱形。
参考答案:证明:\(\because \)四边形\(ABCD\)是平行四边形,\(O\)为对角线\(BD\)的中点,
\(\therefore BO = DO\),\(AD//BC\),
\(\therefore \)\(\angle EDB = \angle FBO\),
\(\because \)在\(\Delta EOD\)和\(\Delta FOB\)中,
\(\left\{ {\begin{array}{*{20}{l}} {\angle EDO = \angle FBO} \\ {OD = OB} \\ {\angle EOD = \angle FOB} \end{array}} \right.\),
\(\therefore \Delta DOE \cong \Delta BOF(ASA)\);
\(\therefore OE = OF\),
又\(\because OB = OD\),
\(\therefore \)四边形\(BEDF\)是平行四边形,
\(\because EF \bot BD\),
\(\therefore \)平行四边形\(BEDF\)为菱形。