“微信扫一扫”进入题库练习及模拟考试

初中数学八年级下册(648题)


如图,在平行四边形\(ABCD\)中,点\(O\)是对角线\(BD\)的中点,过点\(O\)作\(EF \bot BD\),垂足为点\(O\),且分别交边\(AD\),\(BC\)于点\(E\),\(F\).连接\(BE,DF\)。求证:四边形\(BEDF\)是菱形。


    



知识点:第十八章 平行四边形


参考答案:证明:\(\because \)四边形\(ABCD\)是平行四边形,\(O\)为对角线\(BD\)的中点,

\(\therefore BO = DO\),\(AD//BC\),

\(\therefore \)\(\angle EDB = \angle FBO\),

\(\because \)在\(\Delta EOD\)和\(\Delta FOB\)中,

\(\left\{ {\begin{array}{*{20}{l}} {\angle EDO = \angle FBO} \\ {OD = OB} \\ {\angle EOD = \angle FOB} \end{array}} \right.\),

\(\therefore \Delta DOE \cong \Delta BOF(ASA)\);

\(\therefore OE = OF\),

又\(\because OB = OD\),

\(\therefore \)四边形\(BEDF\)是平行四边形,

\(\because EF \bot BD\),

\(\therefore \)平行四边形\(BEDF\)为菱形。

进入考试题库