“微信扫一扫”进入题库练习及模拟考试
如图,在\(\Delta ABC\)中,\(\angle BAC = 90^\circ \),\(AD \bot BC\)于\(D\),\(CE\)平分\(\angle ACB\),交\(AB\)于点\(E\),交\(AD\)于点\(G\), \(EF \bot BC\)于点\(F\),连接FG,求证:四边形\(AEFG\)是菱形。
参考答案:证明:\(\because CE\)平分\(\angle ACB\),\(EF \bot BC\),\(\angle BAC = 90^\circ (EA \bot CA)\),
\(\therefore AE = EF\),\(∠ACE=∠BCE\)
\(\because AD \bot BC\),
\(\therefore \angle ADC = 90^\circ \),
\(\because \angle BAC = 90^\circ \),
\(\therefore \angle BCE + \angle CGD = 90^\circ \),\(\angle ACE + \angle AEC = 90^\circ \),
\(\therefore \angle CGD = \angle AEC\),
\(\because ∠CGD=∠AGE\),
\(\therefore \angle AGE = \angle AEC\)
\(\therefore AG=AE=EF\)
\(\because AD \bot BC\),\(EF \bot BC\),
\(\therefore AD//EF\),
即\(AG//EF\),\(AG = EF\),
\(\therefore \)四边形\(AEFG\)是平行四边形,
\(\because AE = EF\),
\(\therefore \)平行四边形\(AEFG\)是菱形。