“微信扫一扫”进入题库练习及模拟考试

初中数学八年级下册(648题)


如图,在\(\Delta ABC\)中,\(\angle BAC = 90^\circ \),\(AD \bot BC\)于\(D\),\(CE\)平分\(\angle ACB\),交\(AB\)于点\(E\),交\(AD\)于点\(G\), \(EF \bot BC\)于点\(F\),连接FG,求证:四边形\(AEFG\)是菱形。


图片 22    



知识点:第十八章 平行四边形


参考答案:证明:\(\because CE\)平分\(\angle ACB\),\(EF \bot BC\),\(\angle BAC = 90^\circ (EA \bot CA)\),

\(\therefore AE = EF\),\(∠ACE=∠BCE\)

\(\because AD \bot BC\),

\(\therefore \angle ADC = 90^\circ \),

\(\because \angle BAC = 90^\circ \),

\(\therefore \angle BCE + \angle CGD = 90^\circ \),\(\angle ACE + \angle AEC = 90^\circ \),

\(\therefore \angle CGD = \angle AEC\),

\(\because ∠CGD=∠AGE\),

\(\therefore \angle AGE = \angle AEC\)

\(\therefore AG=AE=EF\)

\(\because AD \bot BC\),\(EF \bot BC\),

\(\therefore AD//EF\),

即\(AG//EF\),\(AG = EF\),

\(\therefore \)四边形\(AEFG\)是平行四边形,

\(\because AE = EF\),

\(\therefore \)平行四边形\(AEFG\)是菱形。

进入考试题库