“微信扫一扫”进入题库练习及模拟考试
如图,平行四边形\(ABCD\)中,作\(\angle DAB\)的角平分线AE,交边\(CD\)于点\(E\),过点\(E\)作\(EF//BC\)交\(AB\)于点\(F\),连接\(EF\),求证:四边形\(AFED\)是菱形。
参考答案:证明:\(\because \)四边形\(ABCD\)是平行四边形,
\(\therefore AB//CD\),\(AD//BC\)
\(\therefore \angle DEA = \angle FAE\),
\(\because AE\)平分\(\angle BAD\),
\(\therefore \angle DAE = \angle FAE\),
\(\therefore \angle DEA = \angle DAE\),
\(\therefore AD = ED\),
\(\because EF//BC,AD//BC\)
\(\therefore EF//AD\) ,
\(\because DE//AF\)
\(\therefore \)四边形\(AFED\)是平行四边形,
又\(\because AD = ED\),
\(\therefore \)平行四边形\(AFED\)是菱形。