“微信扫一扫”进入题库练习及模拟考试
如图,在\({\rm{Rt}}\Delta ABC\)中,\(\angle BAC = 90^\circ \),\(AD\)是边\(BC\)上的中线,过点\(A\)作\(AE//BC\),过点\(D\)作\(DE//AB\),\(DE\)与\(AC\)、\(AE\)分别交于点\(O\)、\(E\),连接\(EC\),求证:四边形\(ADCE\)是菱形。
参考答案:证明: \(\because AE//BC\),\(DE//AB\),
\(\therefore \)四边形\(ABDE\)为平行四边形;
\(\therefore \)\(AE = BD\),
\(\because AD\)是边\(BC\)上的中线,
\(\therefore BD = CD\),
\(\therefore AE = CD\),
\(\because AE//CD\)
\(\therefore \)四边形\(ADCE\)是平行四边形,
又\(\because \angle BAC = 90^\circ \),\(AD\)是边\(BC\)上的中线,
\(\therefore AD = \frac{1}{2}BC = CD\),
\(\therefore \)平行四边形\(ADCE\)是菱形。