“微信扫一扫”进入题库练习及模拟考试

初中数学八年级下册(648题)


如图,在\({\rm{Rt}}\Delta ABC\)中,\(\angle BAC = 90^\circ \),\(AD\)是边\(BC\)上的中线,过点\(A\)作\(AE//BC\),过点\(D\)作\(DE//AB\),\(DE\)与\(AC\)、\(AE\)分别交于点\(O\)、\(E\),连接\(EC\),求证:四边形\(ADCE\)是菱形。


图片 11    



知识点:第十八章 平行四边形


参考答案:证明: \(\because AE//BC\),\(DE//AB\),

\(\therefore \)四边形\(ABDE\)为平行四边形;

\(\therefore \)\(AE = BD\),

\(\because AD\)是边\(BC\)上的中线,

\(\therefore BD = CD\),

\(\therefore AE = CD\),

\(\because AE//CD\)

\(\therefore \)四边形\(ADCE\)是平行四边形,

又\(\because \angle BAC = 90^\circ \),\(AD\)是边\(BC\)上的中线,

\(\therefore AD = \frac{1}{2}BC = CD\),

\(\therefore \)平行四边形\(ADCE\)是菱形。

进入考试题库