“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)


已知\(\tan {\left ( {α-β} \right )}=\frac {1} {2}\)\(\tan {β=-\frac {1} {7}}\),且\(α,β\in \left ( {0,π} \right )\),求\(2α-β\)的值.



知识点:第五章 三角函数


参考答案:\(\because 2α-β=2\left ( {α-β} \right )+β\),又\(\tan {\left ( {α-β} \right )}=\frac {1} {2}\),\(\therefore \tan {2\left ( {α-β} \right )}=\frac {2\tan {\left ( {α-β} \right )}} {1-\tan^{2} {\left ( {α-β} \right )}}=\frac {4} {3}\),

故\(\tan {\left ( {2α-β} \right )}=\tan {\left [ {2\left ( {α-β} \right )+β} \right ]}=\frac {\tan {2\left ( {α-β} \right )+\tan {β}}} {1-\tan {2\left ( {α-β} \right )\tan {β}}}=\frac {\frac {4} {3}-\frac {1} {7}} {1+\frac {4} {3}\times \frac {1} {7}}=1\),又\(\because \tan {α=\tan {\left [ {\left ( {α-β} \right )+β} \right ]}}=\frac {\tan {\left ( {α-β} \right )+\tan {β}}} {1-\tan {\left ( {α-β} \right )+\tan {β}}}=\frac {1} {3}<1\),

且\(0<α<\pi \),\(\therefore 0<α<\frac {\pi } {4}\),\(\therefore 0<2α<\frac {\pi } {2}\),

又\(\tan {β=-\frac {1} {7}}\),且\(β\in \left ( {0,\pi } \right )⇒β\in \left ( {\frac {π} {2},π} \right )⇒-β\in \left ( {-π,-\frac {π} {2}} \right )\).

\(\therefore 2α-β\in \left ( {-π,0} \right )\).又\(\tan {\left ( {2α-β} \right )}=1\),\(\therefore 2α-β=-\frac {3π} {4}\).

进入考试题库