“微信扫一扫”进入题库练习及模拟考试
已知α,β为锐角,\(\cos {α=\frac {\sqrt {10}} {10}}\),\(\sin {\left ( {α+β} \right )}=\frac {\sqrt {5}} {5}\),求\(\cos {β}\)
参考答案:\(\because \sin {\left ( {α+β} \right )}=\frac {\sqrt {5}} {5}\),
\(\therefore \cos {\left ( {α+β} \right )}=\pm \frac {2\sqrt {5}} {5}\),
\(\because α,β\)为锐角,
\(\therefore π>α+β>α>0\),
\(\therefore \sin {α=\frac {3\sqrt {10}} {10}}\),
又\(y=\cos {x}\)在\(\left [ {0,π} \right ]\)上单调递减,
\(\therefore \cos {\left ( {α+β} \right )}<\cos {α=\frac {\sqrt {10}} {10}}\),
\(\therefore \cos {\left ( {α+β} \right )=-\frac {2\sqrt {5}} {5}}\),
\(\therefore \cos {β=}\cos {\left [ {\left ( {α+β} \right )-α} \right ]}=\cos {\left ( {α+β} \right )}\cos {α}+\sin {\left ( {α+β} \right )}\sin {α=\frac {\sqrt {10}} {10}\left ( {-\frac {2\sqrt {5}} {5}} \right )}+\frac {3\sqrt {10}} {10}\cdot \frac {\sqrt {5}} {5}=\frac {\sqrt {2}} {10}\).