由题意得:\({\left( {\sqrt[3]{x} - \frac{1}{2}x} \right)^6}\) 的展开式的通项为\({T_{r + 1}} = {\rm{C}}_6^r{(\sqrt[3]{x})^{6 - r}}{( - \frac{1}{2}x)^r} = {( - \frac{1}{2})^r}{\rm{C}}_6^r \cdot {x^{2 + \frac{{2r}}{3}}},r = 0,1, \cdots ,6\) ,
令 \(2 + \frac{2}{3}r = 4,r = 3\) ,
故 \({\left( {\sqrt[3]{x} - \frac{1}{2}x} \right)^6}\) 的展开式中含 \({x^4}\) 项的系数为 \({( - \frac{1}{2})^3}{\rm{C}}_6^3 = - \frac{5}{2}\),
故答案为:\( - \frac{5}{2}\)