“微信扫一扫”进入题库练习及模拟考试
已知函数\(f\left ( {x} \right )=\cos^{2} {x}+\sqrt {3}\sin {x}\cos {x}-\frac {1} {2}\left ( {x\in R} \right )\).
求 \(f(x)\) 的最小正周期;
参考答案:\(\because \) 函数 \(f(x) = {\cos ^2}x + \sqrt 3 \sin x\cos x - \frac{1}{2} = \frac{1}{2}\cos 2x + \frac{{\sqrt 3 }}{2}\sin 2x = \sin (2x + \frac{\pi }{6})\) ,故 \(f(x)\) 的最小正周期为 \(\frac{{2\pi }}{2} = \pi \) .
解析:
进入考试题库