“微信扫一扫”进入题库练习及模拟考试
已知函数
求函数
参考答案:\(f(x) = \sin (\frac{{5\pi }}{6} - 2x) - 2\sin (x - \frac{\pi }{4})\cos (x + \frac{{3\pi }}{4}) = \frac{1}{2}\cos 2x + \frac{{\sqrt 3 }}{2}\sin 2x + (\sin x - \cos x)(\sin x + \cos x) = \sin (2x - \frac{\pi }{6})\)由 \(2k\pi -\frac {\pi } {2}⩽2x-\frac {\pi } {6}⩽2k\pi +\frac {\pi } {2},k\in Z\),解得\(k\pi -\frac {\pi } {6}⩽x⩽k\pi +\frac {\pi } {3},k\in Z\) ,
所以\(f(x)\)的单调增区间为\([k\pi -\frac {\pi } {6},k\pi +\frac {\pi } {3}],k\in Z\) ;
解析: