“微信扫一扫”进入题库练习及模拟考试
已知
若函数
参考答案:由题意知,方程\( {\mathrm{log}}_{3}\left({3}^{x}+1\right)-\frac{1}{2}x=\frac{1}{2}x+a\)有解,
亦即\( {\mathrm{log}}_{3}\left({3}^{x}+1\right)-x=a\),即\( {\mathrm{log}}_{3}\left(\frac{{3}^{x}+1}{{3}^{x}}\right)=a\)有解, \(\therefore {\log _3}(1 + \frac{1}{{{3^x}}}) = a\) 有解,
由 \(\frac{1}{{{3^x}}} > 0\) ,得 \(1 + \frac{1}{{{3^x}}} > 1\) ,\( {\mathrm{log}}_{3}\left(1+\frac{1}{{3}^{x}}\right)>0\) ,故 \(a > 0\) ,即 \(a\) 的取值范围是\(\left( {0, + \infty } \right)\) .