“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)


已知\( \mathrm{f}\left(x\right)={\mathrm{log}}_{3}\left({3}^{x}+1\right)+\frac{1}{2}kx\left(x\in R\right)\) \(f(x) = {\log _3}({3^x} + 1) + \frac{1}{2}kx(x \in R)\) 是偶函数.

 \(k\) 的值;



知识点:第四章 指数函数与对数函数


参考答案:\(\because y = f(x)\) 是偶函数, \(\therefore f( - x) = f(x)\) ,

\(\therefore {\log _3}({3^{ - x}} + 1) - \frac{1}{2}kx = {\log _3}({3^x} + 1) + \frac{1}{2}kx\)

化简得\( {\mathrm{log}}_{3}\left(\frac{{3}^{-x}+1}{{3}^{x}+1}\right)=kx\),即\( {\mathrm{log}}_{3}\frac{1}{{3}^{x}}=kx\),\( {\mathrm{log}}_{3}{3}^{-x}=kx\), \(\therefore - x = kx\) , ,

即 \((k + 1)x = 0\) 对任意的 \(x \in R\) 都成立, \(\therefore k = - 1\) ;

进入考试题库