“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)


已知函数 \( f\left(x\right)=\mathrm{ln}\frac{x+1}{x-1}\).


若函数 \( g\left(x\right)=\mathrm{ln}x-(x-1)\) 在 \( (1,+\infty )\) 上单调递减。比较



\( f\left(2\right)+f\left(4\right)+\cdots +f\left(2n\right)\) 与 \( 2n(n\in {N}^{*})\) 的大小关系,并说明理由。




知识点:第四章 指数函数与对数函数


参考答案:\( f\left(2\right)+f\left(4\right)+\cdots +f\left(2n\right)=\mathrm{ln}\left(\frac{3}{1}\times \frac{5}{3}\times \frac{7}{5}\times \cdots \times \frac{2n+1}{2n-1}\right)\)
\( =\mathrm{ln}\left(2n+1\right)\)
\( \therefore f\left(2\right)+f\left(4\right)+\cdots +f\left(2n\right)-2n=\mathrm{ln}\left(2n+1\right)-2n\)\( =\mathrm{ln}\left(2n+1\right)-\left[\right(2n+1)-1]\)
又 \( g\left(x\right)=\mathrm{ln}x-(x-1)\) 在 \( (1,+\infty )\) 上单调递减
即当 \( x>1\) 时,\( g\left(x\right)<g\left(1\right)=0\)
\( \therefore g(2n+1)<0\)
\( \therefore \mathrm{ln}\left(2n+1\right)-\left[\right(2n+1)-1]<0\)
故\( f\left(2\right)+f\left(4\right)+\cdots +f\left(2n\right)<2n(n\in {N}^{*})\)

进入考试题库