“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)


\(f\left ( {x} \right )=k{a}^{x}-{a}^{-x}\)(\(a>0\) \(a≠1\))是定义在 \(\text{R}\) 上的奇函数,且\(f\left ( {1} \right )=\frac {3} {2}\)



\(g\left ( {x} \right )={a}^{2x}+{a}^{-2x}-mf\left ( {x} \right )\),求 \(g\left ( {x} \right )\) 在\(\left [ {-1,1} \right ]\)上的最小值为\(-2\),求 \(m\).




知识点:第四章 指数函数与对数函数


参考答案:令\(t={2}^{x}-{2}^{-x}\)

易知 \(t={2}^{x}-{2}^{-x}\) 为增函数,

故由\(x\in \left [ {-1,1} \right ]\) ,

可得:\(t\in \left [ {-\frac {3} {2},\frac {3} {2}} \right ]\)

对函数 \(g\left ( {x} \right )=h\left ( {t} \right )={t}^{2}-mt+2\),\(t\in \left [ {-\frac {3} {2},\frac {3} {2}} \right ]\)它的最小值为\(-2\)

等价于\(\left \{ \begin{gathered} {\frac {m} {2}<-\frac {3} {2}} \\ {h\left ( {-\frac {3} {2}} \right )=\frac {9} {4}+\frac {3} {2}m+2=-2} \end{gathered} \right .\) 或\(\left \{ \begin{gathered} {-\frac {3} {2}\leq \frac {m} {2}\leq \frac {3} {2}} \\ {h\left ( {\frac {m} {2}} \right )=\left ( {\frac {m} {2}} \right )^{2}-m\cdot \frac {m} {2}+2=-2} \end{gathered} \right .\) 或\(\left \{ \begin{gathered} {\frac {m} {2}>\frac {3} {2}} \\ {h\left ( {\frac {3} {2}} \right )=\frac {9} {4}-\frac {3} {2}m+2=-2} \end{gathered} \right .\) ,

解得:\(m=-\frac {25} {6}\) 或\(\frac {25} {6}\)

进入考试题库