“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)


已知函数 \(f(x) = \frac{{{2^x} - 1}}{{{2^x} + 1}}\).

讨论 \(f(x)\) 的单调性.



知识点:第四章 指数函数与对数函数


参考答案:\(f(x) = \frac{{\left( {{2^x} + 1} \right) - 2}}{{{2^x} + 1}} = 1 - \frac{2}{{{2^x} + 1}}\),设 \({x_1}\),\({x_2}\) 是 \(R\) 上任意两个实数,且 \({x_1} < {x_2}\),\(f({x_1}) - f({x_2}) = \frac{2}{{{2^{{x_2}}} + 1}} - \frac{2}{{{2^{{x_1}}} + 1}} = \frac{{2({2^{{x_1}}} - {2^{{x_2}}})}}{{({2^{{x_1}}} + 1)({2^{{x_2}}} + 1)}}\),\(\because {x_1} < {x_2}\),\(\therefore {2^{{x_2}}} > {2^{{x_1}}} > 0\),从而 \({2^{{x_1}}} + 1 > 0\),\({2^{{x_2}}} + 1 > 0\),\({2^{{x_1}}} - {2^{{x_2}}} < 0\),\(\therefore f({x_1}) - f({x_2}) < 0\),即\(f({x_1}) < f({x_2})\).\(\therefore f(x)\) 为 \(R\) 上的增函数.

进入考试题库