“微信扫一扫”进入题库练习及模拟考试
求证:函数
参考答案:\(∀{x}_{1},{x}_{2}∈(0,1)\),且\({x}_{1}<{x}_{2}\),则
\(f\left ( {{x}_{1}} \right )-f\left ( {{x}_{2}} \right )=\left ( {{x}_{1}+\frac {1} {{x}_{1}}} \right )-\left ( {{x}_{2}+\frac {1} {{x}_{2}}} \right )=\left ( {{x}_{1}-{x}_{2}} \right )+\left ( {\frac {1} {{x}_{1}}-\frac {1} {{x}_{2}}} \right )=\left ( {{x}_{1}-{x}_{2}} \right )+\frac {{x}_{2}-{x}_{1}} {{x}_{1}{x}_{2}}=\left ( {{x}_{1}-{x}_{2}} \right )\cdot \frac {{{x}_{1}x}_{2}-1} {{x}_{1}{x}_{2}}\)
\(∵0<{x}_{1}<{x}_{2}<1,∴{x}_{1}-{x}_{2}<0,0<{x}_{1}{x}_{2}<1,{x}_{1}{x}_{2}-1<0\),\(\therefore f\left ( {{x}_{1}} \right )-f\left ( {{x}_{2}} \right )>0\)即\(f\left ( {{x}_{1}} \right )>f\left ( {{x}_{2}} \right )\).\(∴f(x)\)在\((0,1)\)上单调递减.