“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)


求证:函数 \( f\left(x\right)=x+\frac{1}{x}\) 在区间 \( \left(0, 1\right)\) 上单调递减.



知识点:第三章 函数的概念与性质


参考答案:\(∀{x}_{1},{x}_{2}∈(0,1)\),且\({x}_{1}<{x}_{2}\),则

\(f\left ( {{x}_{1}} \right )-f\left ( {{x}_{2}} \right )=\left ( {{x}_{1}+\frac {1} {{x}_{1}}} \right )-\left ( {{x}_{2}+\frac {1} {{x}_{2}}} \right )=\left ( {{x}_{1}-{x}_{2}} \right )+\left ( {\frac {1} {{x}_{1}}-\frac {1} {{x}_{2}}} \right )=\left ( {{x}_{1}-{x}_{2}} \right )+\frac {{x}_{2}-{x}_{1}} {{x}_{1}{x}_{2}}=\left ( {{x}_{1}-{x}_{2}} \right )\cdot \frac {{{x}_{1}x}_{2}-1} {{x}_{1}{x}_{2}}\)

\(∵0<{x}_{1}<{x}_{2}<1,∴{x}_{1}-{x}_{2}<0,0<{x}_{1}{x}_{2}<1,{x}_{1}{x}_{2}-1<0\),\(\therefore f\left ( {{x}_{1}} \right )-f\left ( {{x}_{2}} \right )>0\)即\(f\left ( {{x}_{1}} \right )>f\left ( {{x}_{2}} \right )\).\(∴f(x)\)在\((0,1)\)上单调递减.

进入考试题库