“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)


解关于\(x\)的不等式:\(\frac{{ax - 1}}{{x - 2}} \geqslant \frac{a}{2}\left( {a \in R} \right)\)



知识点:第二章 一元二次函数、方程和不等式


参考答案:\(a < 0\)时,不等式:\(\frac{{ax - 1}}{{x - 2}} > \frac{a}{2}\)的解集为\(\left\{ {x\left| {\frac{2}{a} - 2 \leqslant x < 2} \right.} \right\}\);当\(a = 0\)时,不等式:\(\frac{{ax - 1}}{{x - 2}} > \frac{a}{2}\)的解集为\(\left\{ {x\left| {x < 2} \right.} \right\}\);当\(0 < a < \frac{1}{2}\)时,不等式:\(\frac{{ax - 1}}{{x - 2}} > \frac{a}{2}\)的解集为\(\left\{ {x\left| {x \geqslant \frac{2}{a} - 2或x < 2} \right.} \right\}\);当\(a = \frac{1}{2}\)时,不等式:\(\frac{{ax - 1}}{{x - 2}} > \frac{a}{2}\)的解集为\(\left\{ {x\left| {x \ne 2} \right.} \right\}\);当\(a > \frac{1}{2}\)时,不等式:\(\frac{{ax - 1}}{{x - 2}} > \frac{a}{2}\)的解集为\(\left\{ {x\left| {x \leqslant \frac{2}{a} - 2} \right.} \right.\)或\(\left. {x > 2} \right\}\).

进入考试题库