“微信扫一扫”进入题库练习及模拟考试

高中数学必修 第一册(648题)



\(a,b,c\in \text{R}\)证明:关于\(x\)的方程\(a{x^2} + bx + c = 0\)有一个根为\( - 1\)的一个充要条件\(a - b + c = 0\)




知识点:第一章 集合与常用逻辑用语


参考答案:证明:充分性:\(\because a - b + c = 0\),\(\therefore c = b - a\),代入方程\(a{x^2} + bx + c = 0\)得\(a{x^2} + bx + b - a = 0\),即\(\left( {x + 1} \right)\left( {ax - a + b} \right) = 0\).\(\therefore \)关于\(x\)的方程\(a{x^2} + bx + c = 0\)有一个根为\( - 1\);
必要性:\(\because \)方程\(a{x^2} + bx + c = 0\)有一个根为\( - 1\),\(\therefore x = - 1\)满足方程\(a{x^2} + bx + c = 0\),\(\therefore a \times {1^2} + b \times \left( { - 1} \right) + c = 0\),即\(a - b + c = 0\).故关于\(x\)的方程\(a{x^2} + bx + c = 0\)有一个根是\( - 1\)的充要条件是\(a - b + c = 0\).

进入考试题库