对于任意两个数\(x,y(x,y∈{N}^{*})\),定义某种运算“◎”如下:
①当\(\left \{ \begin{gathered} {x=2m,m\in {N}^{*}} \\ {y=2n,n\in {N}^{*}} \end{gathered} \right .\)或\(\left \{ \begin{gathered} {x=2m-1,m\in {N}^{*}} \\ {y=2n-1,n\in {N}^{*}} \end{gathered} \right .\)时,\(x\mathrm{◎}y=x+y\);②当\(\left \{ \begin{gathered} {x=2m,m\in {N}^{*}} \\ {y=2n-1,n\in {N}^{*}} \end{gathered} \right .\)时,\(x\mathrm{◎}y=xy\).
则集合\(A=\left \{ {{(x,y)|x◎y=10}} \right \} \)的子集个数是( )
解:①若\(x,y\)同为奇数或偶数时;\(\because x\mathrm{◎}y=x+y=10\),
∴同时为偶数时:\( (2,8),(4,6),(6,4),(8,2)\);同时为奇数时:\( (1,9),(3,7),(5,5),(7,3),(9,1)\);
②当\(x\)为偶数,\(y\)为奇数时;\(\because x\mathrm{◎}y=xy\).\( \therefore (2,5),(10,1)\)
∴综上所诉:集合\(A\)中共含有11个元素,故其子集个数为:\( {2}^{11}\)个.故选:C.