解:由题意得①组\( \left\{\begin{array}{l}1=ab\\ b={a}^{2}\end{array}\right.\)或②\( \left\{\begin{array}{l}1={a}^{2}\\ b=ab\end{array}\right.\),由②得\(a=\pm 1\),当\(a=1\)时,\(A=\{ 1,1,b\} \),不符合,舍去;当\(a=-1\)时,\(b=0\),\(A=\{ 1,-1,0\} \),\(B=\{ -1,1,0\} \),符合题意.由①得\(a=1\),舍去,所以\(a=-1,b=0\).\(\therefore {a}^{2021}+{b}^{2020}=-1\).故选:A.