“微信扫一扫”进入题库练习及模拟考试
如图,在等边\(△ABC\)中,\(D、F\)分别为\(CB、BA\)上的点,且\(CD=BF\),以\(AD\)为边作等边\(△ADE\).使点\(E\),点\(D\)分别落在\(AB\)边两侧。求证:四边形\(CDEF\)为平行四边形。
参考答案:证明:
∵等边\(△ABC\),等边\(△ADE\),
\(∴AD=AE,AB=AC,\)
\(∠EAD=∠BAC=60°\)
\(∴∠EAB=∠EAD-∠BAD\)
\(=∠BAC-∠BAD=∠DAC\)
∴连接\(BE\),在\(△ADC\)和\(△AEB\)中,
\(AD=AE,∠DAC\)
\(=∠EAB,AC=AB\)
\(∴△ADC≌△AEB\left ( {\text{SAS}} \right )\),
\(∴CD=EB,∠ABE\)
\(=∠ACB=60°\)
又因为\(CD=BF\),
\(∴BE=BF\),
\(∴△BEF\)为等边三角形
\(∴BF=EF,∠EFB=60°,\)
\(∴CD=EF,∠EFB=∠ABC\)
\(∴CD//EF\),
∴四边形\(CDEF\)为平行四边形。