“微信扫一扫”进入题库练习及模拟考试
(10分)在⊙O中,AB为直径,C为⊙O上一点.
(1)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;
(2)如图②,D为AC上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.
参考答案:见解析
解析:
解:(1)连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°.(2分)∵OA=OC,∴∠OCA=∠CAB=27°,∴∠COB=2∠CAB=54°.在Rt△COP中,∠P+∠COP=90°,∴∠P=90°-∠COP=36°;(5分)
(2)∵E为AC的中点,∴OD⊥AC,即∠AEO=90°.(6分)在Rt△AOE中,由∠EAO=10°,得∠AOE=90°-∠EAO=80°,∴∠ACD=∠AOD=40°.(8分)∵∠ACD是△ACP的一个外角,∴∠P=∠ACD-∠A=40°-10°=30°.(10分)