“微信扫一扫”进入题库练习及模拟考试
如图,直线y=-x+3与x轴、y轴分别交于点
B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
参考答案:见解析
解析:
解:(1)(6分)由已知,得B(3,0),C(0,3),..............2分
∴,..................................................................4分
解得,..........................................................................5分
∴抛物线解析式为y=x2-4x+3;....................................................6分
(2)由(1),得A(1,0),连接BP,................................1分
∵∠CBA=∠ABP=45°,
∴当时,△ABC∽△PBQ,
∴BQ=3,∴Q1(0,0),.........................................................3分
∴当时,△ABC∽△QBP,
∴BQ=,∴Q2(
,0);..................................................5分
∴Q点的坐标是(0,0)或(,0)...............................6分