“微信扫一扫”进入题库练习及模拟考试
三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是( )
A.24
B.24或8
C.48或16
D.8
参考答案:B
解析:
【考点】解一元二次方程-因式分解法;勾股定理;勾股定理的逆定理.
【分析】由x2﹣16x+60=0,可利用因式分解法求得x的值,然后分别从x=6时,是等腰三角形;与x=10时,是直角三角形去分析求解即可求得答案.
【解答】解:∵x2﹣16x+60=0,
∴(x﹣6)(x﹣10)=0,
解得:x1=6,x2=10,
当x=6时,则三角形是等腰三角形,如图①,AB=AC=6,BC=8,AD是高,
∴BD=4,AD==2
,
∴S△ABC=BC•AD=
×8×2
=8
;
当x=10时,如图②,AC=6,BC=8,AB=10,
∵AC2+BC2=AB2,
∴△ABC是直角三角形,∠C=90°,
S△ABC=BC•AC=
×8×6=24.
∴该三角形的面积是:24或8.
故选:B.