“微信扫一扫”进入题库练习及模拟考试
如图1,在正方形ABCD中,点M、N分别在AD、CD上.
(1)若∠MBN=45°且∠ABM=∠CBN,则易证 .(选择正确答案填空)
①AM+CN>MN;②(AM+CN)=MN;③MN=AM+CN.
(2)若∠MBN=∠ABC,在(1)中线段MN、AM、CN之间的数量关系是否仍然成立?若成立给予证明,若不成立探究出它们之间关系.
【拓展】如图2,在四边形ABCD中,AB=BC,∠ABC与∠ADC互补.点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请写出猜想并证明.
参考答案:见解析
解析:
【考点】四边形综合题.
【专题】综合题.
【分析】(1)设BD于MN交于点H,如图1(1),根据正方形的性质得∠ABH=∠CBH=45°,BA=BC,由于∠MBN=45°,∠ABM=∠CBN,则∠ABM=∠HBM=∠HBN=∠CBN,再证明△ABM≌△CBN得到BM=BN,AM=CN,接着根据等腰三角形的性质可判断BH⊥MN,于是根据角平分线的性质得MA=MH,NH=NC,所以有MN=AM+CN;
(2)把△BAM绕点B顺时针旋转90°得到△BCP,如图1(2),根据旋转的性质得BM=BP,AM=CP,∠MBP=90°,∠BCP=∠A=90°,再证明点P在DC的延长线上,则NC+CP=NP,利用∠MBN=
∠ABC=45°得到∠NBP=45°,接着可证明△BNM≌△BNP,则MN=NP,于是有MN=CP+CN=AM+CN;
【拓展】如图2,由于∠ABC+∠ADC=180°,根据四边形内角和得到∠BAD+∠BCD=180°,则∠BAM=∠BCD,根据旋转的定义,可把△BAM绕点B顺时针旋转90°得到△BCQ,则根据旋转的性质得∠BAM=∠BCQ,BM=BQ,∠MBQ=∠ABC,则∠BCQ=∠BCD,则可判断点Q在CN上得到CN=CQ+MQ=AM+NQ,然后证明△BMN≌△BQN得到MN=QN,则CN=AM+MN.
【解答】(1)解:设BD于MN交于点H,如图1(1),
∵BD为正方形ABCD的正方形,
∴∠ABH=∠CBH=45°,BA=BC,
∵∠MBN=45°,∠ABM=∠CBN,
∴∠ABM=∠HBM=∠HBN=∠CBN,
在△ABM和△CBN中
,
∴△ABM≌△CBN,
∴BM=BN,AM=CN,
而∠HBM=∠HBN,
∴BH⊥MN,
∴MA=MH,NH=NC,
∴AM=MH=HN=NC,
∴MN=AM+CN;
故答案为③;
(2)解:在(1)中线段MN、AM、CN之间的数量关系仍然成立.理由如下:
把△BAM绕点B顺时针旋转90°得到△BCP,如图1(2),
∴BM=BP,AM=CP,∠MBP=90°,∠BCP=∠A=90°,
∵∠BCP+∠BCN=180°,
∴点P在DC的延长线上,
∴NC+CP=NP,
∵∠MBN=∠ABC=45°,
∴∠NBP=45°,
在△BNM和△BNP中
,
∴△BNM≌△BNP,
∴MN=NP,
∴MN=CP+CN=AM+CN;
【拓展】解:如图2,∵∠ABC+∠ADC=180°,
∴∠BAD+∠BCD=180°,
而∠BAD+∠BAM=180°,
∴∠BAM=∠BCD,
∵AB=BC,
∴把△BAM绕点B顺时针旋转90°得到△BCQ,
∴∠BAM=∠BCQ,BM=BQ,∠MBQ=∠ABC,
∴∠BCQ=∠BCD,
∴点Q在CN上,
∴CN=CQ+MQ=AM+NQ,
∵∠MBN=∠ABC,
∴∠MBN=MBQ,[来源:Zxxk.Com]
∴∠MBN=∠QBN,
在△BMN和△BQN中[来源:Zxxk.Com]
,
∴△BMN≌△BQN,
∴MN=QN,
∴CN=AM+MN,
即MN=CN﹣AM.
【点评】本题考查了四边形的综合题:熟练掌握正方形的性质和旋转的性质;灵活应用全等三角形的判定与性质解决线段相等的问题;解决本题的关键是构建全等三角形.