“微信扫一扫”进入题库练习及模拟考试
如图,等腰直角△ABC腰长为a,现分别按图1,图2方式在△ABC内内接一个正方形ADFE和正方形PMNQ.设△ABC的面积为S,正方形ADFE的面积为S1,正方形PMNQ的面积为S2.①AD:AB=1:2;②AP:AB=1:3;③S1+S2>S;④设在△ABC内任意截取一个正方形的面积为S3,则S3≤S1.上述结论中正确的是 .
参考答案:①②④
解析:
【考点】相似三角形的判定与性质;等腰直角三角形;正方形的性质.
【分析】①如图1:根据等腰三角形的性质求解;
②图2:同图1的证法;
③由(1)得出的AB、AD、AP、AB的关系,然后用a表示出AB、AD、AP的值,这样就能表示出S1、S2和S,然后进行比较即可;
④结合③,即可求得答案.
【解答】解:①图1中,∵△ABC是等腰直角三角形,四边形ADFE是正方形,
∴AD=DF,∠B=45°,
∴DF=DB,
∴AD=DB,
∴AD:AB=1:2;故正确;
②图2中,同理:PM=MN,∠B=45°,
∴PM=MB,
∴MN=MB,
∴MN=MB=NC,
∴AP:AB=PQ:BC=MN:BC=1:3;故正确;
③图1中,S1=(
a)2=
a2,
∵PQ:BC=AP:AB=1:3,
∴PQ=
a,
∴S2=(a)2=
a2,
∴S1+S2=(+
)a2=
a2,
∵S=a2=
a2,
∴S1+S2<S;故错误;
④由③可得:在△ABC内任意截取一个正方形的面积为S3,则S3≤S1;故正确.
故答案为:①②④.
【点评】此题考查了相似三角形的判定与性质以及等腰直角三角形的性质.注意掌握面积的求解方法是关键.