“微信扫一扫”进入题库练习及模拟考试
如图,△ACB和△ADE均为等边三角形,点C、E、D在同一直线上,连接BD.
求证:CE=BD.
参考答案:见解析
解析:
【考点】全等三角形的判定与性质;等边三角形的性质.
【分析】由等边三角形的性质就可以得出AD=AE,AB=AC,∠DAE=∠BAC=60°,由等式的性质就可以得出∠DAB=∠EAC,就可以得出△ADB≌△AEC而得出结论.
【解答】解:∵△ACB和△ADE均为等边三角形,
∴AD=AE,AB=AC,∠DAE=∠BAC=60°,
∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,
∴∠DAB=∠EAC.
在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴CE=BD.
【点评】本题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.