“微信扫一扫”进入题库练习及模拟考试
在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有( )
A.1个
B.2个
C.3个
D.4个
参考答案:D
解析:
【考点】三角形内角和定理.
【分析】根据三角形的内角和定理得出∠A+∠B+∠C=180°,再根据已知的条件逐个求出∠C的度数,即可得出答案.
【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,
∴2∠C=180°,
∴∠C=90°,
∴△ABC是直角三角形,∴①正确;
②∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,
∴∠C=×180°=90°,
∴△ABC是直角三角形,∴②正确;
③∵∠A=90°﹣∠B,
∴∠A+∠B=90°,
∵∠A+∠B+∠C=180°,
∴∠C=90°,
∴△ABC是直角三角形,∴③正确;
④∵∠A=∠B=∠C,
∴∠C=2∠A=2∠B,
∵∠A+∠B+∠C=180°,
∴∠A+∠A+2∠A=180°,
∴∠A=45°,
∴∠C=90°,
∴△ABC是直角三角形,∴④正确;
故选D.