“微信扫一扫”进入题库练习及模拟考试
如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是( )
A.6cm
B.4cm
C.10cm
D.以上都不对
参考答案:A
解析:
【考点】角平分线的性质;等腰直角三角形.
【分析】由∠C=90°,根据垂直定义得到DC与AC垂直,又AD平分∠CAB交BC于D,DE⊥AB,利用角平分线定理得到DC=DE,再利用HL证明三角形ACD与三角形AED全等,根据全等三角形的对应边相等可得AC=AE,又AC=BC,可得BC=AE,然后由三角形BED的三边之和表示出三角形的周长,将其中的DE换为DC,由CD+DB=BC进行变形,再将BC换为AE,由AE+EB=AB,可得出三角形BDE的周长等于AB的长,由AB的长可得出周长.
【解答】解:∵∠C=90°,∴DC⊥AC,
又AD平分∠CAB交BC于D,DE⊥AB,
∴CD=ED,
在Rt△ACD和Rt△AED中,
,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,又AC=BC,
∴AC=AE=BC,又AB=6cm,
∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.
故选A.