“微信扫一扫”进入题库练习及模拟考试
(14分)阅读理解:
点A、B、C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是有序点对[A,B]的好点.
例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是有序点对[A,B]的好点;但点C不是有序点对[B,A]的好点.
知识运用:
(1)同理判断:如图①,点B [D,C]的好点,点B [C,D]的好点(两空均填“是”或“不是”);
(2)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.数轴上数 所表示的点是[M,N]的好点;
(3)如图③,A、B为数轴上两点,点A所表示的数为﹣40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.
①用含t的代数式表示PB= ,PA= ;
②当t为何值时,P、A和B中恰有一个点为其余两点的好点?
参考答案:见解析
解析:
【分析】(1)根据定义计算BD、BC,验证是否具有BD=2BC即可;
(2)根据定义计算2倍数量关系,MN=6,6分成三份,一份为2,所以2表示的点符合题意;
(3)设点P表示的数为x,分情况讨论:
①计算出P运动的路程极为PB的长度,因为AB等于60,所以PA等于(60﹣2t).
②分为5种情况:P为【A,B】的好点;A为【B,P】的好点;P为【B,A】的好点;A为【P,B】的好点;B为【A,P】的好点.
【解答】(1)因为BD=2,BC=1,BD=2BC,所以B是[D,C]好点,但不是[C,D]好点.
(2)因为MN=6,6÷3=2,当为[M,N]好点是,左边距离是右边距离的2倍,所以左边为4个单位,右边为2个,所以这个数是2,或当N是中点时,这个数为10.
(3)①因为AB=60,PB等于2t,所以AP等于60﹣2t.
②因为P、A和B中恰有一个点为其余两点的好点,所以分为5种情况讨论,分别如下:
第一种:P为【A,B】的好点,由题意 得,x﹣(﹣40)=2(20﹣x),解得:x=0,t=20÷2=10(秒).
第二种:A为【B,P】的好点,由题意 得,20﹣(﹣40)=2(x﹣(﹣40)),解得:x=﹣10,t=(20﹣(﹣10))÷2=15(秒).
第三种:P为【B,A】的好点,由题意 得,20﹣x=2(x﹣(﹣40)),解得:x=﹣20,t=(20﹣(﹣20))÷2=20(秒).
第四种:A为【P,B】的好点,由题意 得,x﹣(﹣40)=2(20﹣(﹣40)),解得:x=80(舍).
第五种:B为【A,P】的好点.由题意 得,20﹣(﹣40)=2(20﹣x),解得:x=﹣10,t=(20﹣(﹣10))÷2=15(秒).
此种情况点 P 的位置与②中重合,即点 P 为 AB 中点.
综上可知,当 t 为 10 秒、15 秒或 20 秒,P、A 和 B 中恰有一个点为其余两点的好点.